APPROXIMATE DETERMINATION OF THE GAS POPULATION
INVERSION AND GAIN COEFFICIENT DURING ADIABATIC
EXPANSION IN A NOZZLE

G. V, Gembarzhevskii UDC 621.375.826

Approximate analytical expressions are obtained herein for the power and weak-signal gain coeffi-
cient of a gasdynamic laser under more general assumptions than have been used earlier. Thus, the follow-
ing assumptions were made in [1] to obtain a simple theoretical estimate of the weak-signal gain coefficient:
the population of the third CO, mode is constant everywhere in the gas stream and equal to the population in
the nozzle throat, and the population of the other two CO, modes is in equilibrium with translational motion.
Approximately the same results have been obtained in [2], but as a result of an assumption about an infinite-
ly high rate of gas cooling in the nozzle as compared with the vibrational relaxation rate. Hence [2] per-
mits finding the domain of applicability of the results obtained in [1], which turns out to be bounded with
respect to low stagnation temperature and pressure.

A similarity law for the gain coefficient of a gasdynamic laser in the domain of comparatively high
stagnation pressures has been proposed in [3]. The solution of a model problem on vibrational relaxation
with constant reaction rates permitted the similarity law to be obtained only to the accuracy of an unknown
function of the stagnation temperature, the adiabatic gas index, and the nozzle configuration. A numerical
analysis of the system of kinetic and gasdynamic equations for the nozzle [4-6] is needed to determine this
function.

The domain of applicability of the results obtained [1-3] is bounded substantially because of neglect~
ing the change in vibrational relaxation rate along the nozzle: thus,an upper bound to the stagnation param-
eters is required in [1, 2}, and the nozzle configuration, gas stagnation temperature, and adiabatic index
are fixed in [3].

It is proposed to obfain analytic expressions herein for the dependences of the power and gain coef-
ficient of a gasdynamic laser on the nozzle shape and size, and also, by taking account of the time depend-
ences of the kinetic equation coefficients, the gas stagnation parameters and composition which would be
valid in a broad range of variation of these parameters.

Let us take the ordinary assumptions used in numerical computations [4-6]: there exist vibrational
temperatures Tj of the individual mixture modes (the subseript i=1, 2, 3 refers to the CO, modes, and i =4,
to nitrogen), the rotational and translational temperatures equal T, the gasdynamic flow is quasi-one-
dimensional, and viscosity and heat conduction effects are neglected. Moreover, we take two more barely
essential assumptions: the characteristic temperature of the third CO, mode equals the characteristic
temperature of the fourth mode, i.e., of the nitrogen 95= 6,, the rate of exchange between the first and
second CO, modes is greater than the gas cooling rate, i.e., Y; = Y,%exp(—78/T) & Y,?, where Y;=exp(—0;/
Tj) is a quantity governing the population of the mode i,and 6; is the characteristic temperature of the
mode i. This assumption is used in {3, 6], and it is shown in [5] that it is satisfied to a high degree of
aceuracy even at low pressures,

And, finally, the main assumption is the following: The time dependence of the gasdynamic quantities
in the kinetic equation coefficients can be approximated by a dependence for a gas flow with a constant
adiabatic index y. Indeed, the data presented in [6] permit the assertion that the accuracy of the popula-
tion inversion ecalculation is within +25% limits when this latter assumption is used. The error in the
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computation will be lower, the smaller the initial store of vibrational energy, i.e., the lower the stagnation
temperature and the higher the relative concentrations of helium ¥, and nitrogen ¥,.

Using the above-mentioned assumptions, we obtain the system

dY, | dX, = Ay (Y, — Xp) — md g (YV; — V,2X,3X,) (1
dY5/ dXy = Agi (Vg — Y3X,73X) — Ay (Vi — X3) _ 2)
dY, /1 dX, = A (Y — X)) — rd g (Y3 — T) (3)

where the following notation has been introduced: Xj are equilibrium values of Yi:

Xi = exp (— ei / T), A.] = N*Winin‘—lXi"l

Wy = 0.50, D) P, * Vo5, tULL /I C

=1

3
W31 = 93_1 z Pﬂa Yo, Ut/ C

a=1

3
VV“ = 0,71 Z P4111F1512U.12 /C
a=1

Way = 057 1P 3,2 W0, U/ €

N, is the value of the gas density in the nozzle throat, ¥, is the relative concentration of the substance

o (the subscript o takes on the values 1, 2, 3, denoting carbon dioxide gas, nitrogen, and helium, respec-
tively), 0'011 is the collision cross section between the CO, and o molecules according to the data in {7],

o, is the collision cross section between the N, and o molecules according to [7], Uai is the mean rela-
tive velocity of the molecules & and CO,, U,? is the mean relative veloeity of the molecules @ and N,,

C is the speed of sound, and P i1a (P322) are the probabilities of the corresponding vibrational transitions

for a single collision with the molecule @ (Ny). In conformity with [5, 7], the following values are taken here:

Pyt = 4507 exp (—1107-s 4 1007-%)

P2 = 3.0P,, P,3 = 10T-": exp (— 50T

Pyt = 2.5 exp (— 80T + B0T—3), Py? = 0.4Py"

Py = 0.46P,}, Pu* = 1.4-10° exp (— 2807-%)

Pgo? = 4-107° (1100 — T)* + 6-10~¢

Ry=(1-—-Y,* 1Y) —~Yy) 1 +27, 1+ Yy

Rp=@0—Y) (1 =Y —Y), Ru = —7,)

Ry =1 -Y, (1 =Y (1 —Y (1 —7))
m=052(1—Y) (1 —Y)?2[1+2Y,(1 + ¥yl exp (— 2420.7°Y)
r=TV¥, (1 —Y,) (1Y,

ds [t 4281 —0)]2

H = —
di S, (1 —t)t"2 Tk (1 + 2k)

Where S=8 (l) is the nozzle section at a distance ] from the throat, Sx is the nozzle section in the throat, '
T is the translational temperature in the throat, and t=T/T 4, k=(y—1)~!, vy is the mixture adiabatic index.
Let us assume the domain of "freezing" of the third and the two other CO, modes to be separated,
then Y;—Y,?X, X, =~ Y;—X,. It is shown below that this is actually so in the interesting cases from the view-

point of obtaining population inversions.

Considering the system (1)-(3), let us note that the coefficients A depend strongly on X so that AX >1
in the nozzle throat, while AX <« 1 at the end of the nozzle, i.e., the gas cooling rate is initially less than the
vibrational relaxation rate, and then the picture reverses, Assuming dY/dX ~ Y/X (a similar assumption

was used in [8]), the solution of the system can be found in both the limit cases AX = 1. Finally, by merging
the solutions at the point X+ where AX+=1, we obtain the frozen values of Y*. The initial conditions do not

influence Y* if the condition AX >>1.

The specific results are the following.

1°. The total rate of vibrational relaxation of N, and the third CO, mode is determined by the transi-
tion Ay, i.e., let Ay (XTyg) < rAg (X)) where X154 is defined as the root of the equation X3Az (X;) =1, then

324



Y3+ S [( 2:/111 + rr +1 1) Az ) (1 - ril‘l: T r/jf;z )—1J (4)

.
X=Xy

The expression in the square brackets here and in (5), (6) is taken at the points indicated at the
brackets.
2°. The transition Ay, is the limiting transition. Let
rAsa(X;m) < Au(Xsh), A41(X;32) << ’As(X;w), X ::2 < X:;-31 << X;:sz

where X%, has been defined above, Xt} and X%, are, respectively, the smaller and larger roots of the
equation X;rAs, (Xs) =1. In this case

r.As rr+1) dss r-la1 rAgs

e <[ el A+ A

I“~131 r ()‘ -+ 1) Aaz 7'1‘151 I‘x13-3

[ e [ —”i‘-+~“‘i)*]&:x;ﬁ<l’;:

X=X (5)

In both the above-mentioned cases, we obtain for the frozen value of Y,

Yyt = [2142;1 (1 + mA 31Y3+)] X=Xyt (6)
where X,* is defined by the equation XA, (X;) =1.

Let us note the following important circumstance: The frozen population of the first and second CO,
modes Y,*=(Y,")?2 can be made arbitrarily small because of selecting the nozzle shape 8,71 dS/dl below
the section where the third CO, mode is frozen (X3 ~ X;*) if the inequality W,;Ry; > Wy, Ry, is satisfied in
this region of the nozzle. For this, 30-40% of helium in the mixture turns out to be sufficient according to
the values taken for the probabilities of the processes. The assumption about separation of the freezing
domains of the third and the other two CO, modes is thereby supported.

Taking account of the above relative to the populations of the first and second CO, modes, let us con-
sider the maximum power P which can be extracted from the gas mixture in the form of coherent radiation
to be determined by the power stored in the third CO, mode and in the nitrogen, i.e.,

P =h(vg—v;) S UN, [V Y (1 — V)t - VY, (1 — Y)Y )
where h (v3—v,) is the radiation quantum energy, and S, U (N, is the gas discharge.

Optimal conditions to achieve maximum power can be mentioned by analyzing (4), (5), (7) (and con-
sidering S=8 (), T, X3%, ¥,, ¥, +¥, the independent variables).

1. The angle B8 between the axis and the generatrix of an axisymmetric nozzle, or half the angle be-
tween the planes of a wedge nozzle should be selected as great as possible since P~ tanpg (that part of the
nozzle where the third CO, mode is frozen, i.e., X; #X;* is kept in miad).

2. Since P~ S12 for an axisymmetric nozzle, then several rather than one nozzle should be used for
a fixed total critical section (in conformity with the recommendations in [4]), by simultaneously increasing
the density in the critical section in proportion to §;1/2 (then all the remaining parameters will become
invariant, particularly the Reynolds number). The power is proportional to the width for a wedge nozzle.

3. The critical temperature should be selected as high as possible since P~ Tt tK/2 for an axi-
symmetric and P~ T, for a wedge nozzle. Only the dissociation process sets the upper bound for T 4.

4. The power depends on the total relative concentrations of CO, and N, not more strongly than

P~ ¥, +¥,. The quantity ¥, +¥, is limited by the relative He concentration required for effective deactiva-
tion of the first and second CO, modes (¥, +¥, = 0.7).

5. The dependence of P on X33, for 1° exhibits a shallow maximum in the neighborhood of X’;Si =2
1072 and 2 - 10~! for the axisymmetric and wedge nozzles, respectively.

6. In case 1° the optimal value is r=Ag; (X'3;)/ Ay (Xi5y); P~ &L

Now, let us consider the weak-signal gain coefficient of a gasdynamic laser g. Let us note that the
gain coefficient is not of greatestinterest so much as the optical thickness at the nozzle width gd defined by
the eguality

AF /T =exp(gd) — 1
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where AI/I is the relative increase in the light intensity during passage through a layer of optically active
medium of thickness d equal to the nozzle width.

It turns out that both the optical thickness gd and the gain coefficient as a function of the distance
along the nozzle reach a maximum at the point where the density drops. to the value Ny ~2- 10! em™3 (i.e.,
where the Lorentz line shape is replaced by the Doppler shape). Here g is to be understood as the gain
coefficient at the center of the vibrational-rotational line, where the rotational quantum numberJ is selected
optimal at the given temperature. The deduction presented above is valid if the freezing of the first and
second CO, modes terminates earlier than the gas density drops to the value Ny =~ 2+ 10" em=%, This can
always be achieved by increasing the gas density N4 and diminishing the radius of the critical section of
the axisymmetric nozzle or the height of the wedge nozzle in proportion to N, where all the remaining
parameters remain unchanged.

The maximum gain coefficient max g and the maximum value of light amplification over the width of
an axisymmetric nozzle max gd are determined by the formulas

max g & ¥, (V5" — ¥, (1 — ¥,4) (1 — V57 (1 — Y5 [T (Ng)l? (8

20 (Ys" — Vit) (1 — YT (1 — Yt (1 — Y3t 5,7

max gd =~ -
g T (N [£ (Vo)™ 2 [ 2k — 2kt (Ny)]**

(9
where a =3 10%, cm~! deg.

By analyzing (4), (5), (8), (9) [and considering 8=8 (I), T, X3+, ¥ ,(¥, + ¥,) the independent variables],
we obtain the following conditions for achieving the maximum gain in the nozzle width.

o 1. The angle B should be selected as large as possible since max gd ~ (tan 3)1/2+1/k, max g ~ (tan-
PEAS
2. For an axisymmetric nozzle max gd ~ sk-2)/1k, Hence, several, rather than one, axisymmetric

nozzles should be used for a fixed total critical section. The width d in a wedge nozzle should be increased,
and the height at the critical section h, should be diminished since (max g) d ~ dh-1/k,

2
3. For an axisymmetric nozzle T , should be selected as high as possible since gd ~ reé-k+2)/ek,
For a wedge nozzle the maximum gain is achieved at a temperature determined by the expression
T*z—se3/lnxa+

(i.e., freezing of the third CO, mode should occur in the nozzle throat).
4. The condition to achieve maximum power corresponds to Sec. 4.

5. The optimal value for a wedge nozzle is X'gu =3-107! for 1°, while for an axisymmetric nozzle
X}:M should be selected as large as possible by taking into account that the dissociation process sets the
upper bound for X"3'31. The maximum in the dependence of the optical thickness on X*3'31 is barely defined
(shallow).

6. The optimal value for an axisymmetric nozzle in 1° is r=Ag (X";;M) /Ay (X"gu), while the optimal
value of r for a wedge nozzle is infinite (¥, =0).

7. We obtain the following result by comparing the efficiency of a wedge and a number of axisym-~
metric nozzles. For the fixed parameters xS, tan 8, Ty, X3+, Uy +¥,y, N, (TS5« is the total critical sec-
tion), the ratio between the maximal optical thicknesses of the wedge and a number of axisymmetric nozzles
is given by the expression :
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The estimate obtained above for the power and gain coefficient was verified by a numerieal computa-
tion published in [5]. The results of the comparison are presented in the graphs, The solid lines in Fig. 1
represent the dependence of the ratio between the translational temperature computed analytically (for k=
2.5, 3) and the temperature computed numerically T, /Ty on the logarithm of the relative nozzle cross sec-
tion In S/S 4, and the dashes are the dependence of the ratio between the densities computed analytically
(k=2.5, 3) and numerically N /Ny on the same argument. The mixture composition is 10% CO, +90% N,,
the temperature in the critical section is T, =1290°K, and the density is Ny =4 -101® em™3, Figure 2 presents
the dependence of the difference Y3+--Y1+ computed analytically for k=2 (eurve 1) and numerically (curve
2} on the temperature in the critical section, where the density varies negligibly, and the mixture composi-
tion is: (Nx ~4°10¥ cm=%) 10% CO,+40% N, +50% He.

The results presented permit the assertion that the accuracy of the analytical computation is within
15% limits in the temperature, within 4% in the density, within 15% in the population intensity.

In principle, the results obtained are also applicable to other systems besides CO, +N, +He.

In conclusion, the author is grateful to N. A. Generalov for discussing the research and for useful
remarks, and to L. K. Selezneva for additional material on the numerical computation.
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